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1.	 Introduction
Nowadays, among the all renewable energy sources, wind systems are more economic in comparison with others. 
Variable wind speed systems deliver 20%–30% more energy in comparison with constant speed systems (Nguyen and 
Naidu, 2011). Many developed generation systems are used to extract maximum wind energy. To achieve the most 
efficient wind energy extraction system, it is recommended to run a wind turbine generator in a variable speed mode. 
This is because it allows for higher energy gain and reduced stresses on the system (Yin et al., 2007; Barut et al. 2018).

Permanent magnet synchronous machines (PMSM) are broadly used in different industrial fields as renewable 
energy (Costa et al., 2013; Weeber et al., 2010; Kallesoe et al. 2004). The development of rare-earth magnetic 
materials (such as neodymium magnets or samarium-cobalt magnets) for the manufacturing of permanent magnets 
makes PMSM highly competitive in terms of power density and efficiency (Wang and Deng, 2012; Yin et al., 2007), 
compared to other kind of machines; and due to the multitude of advantages they provide over other generator 
types, they have come to occupy a place of choice in the wind turbine market.

The presence of faults affects the efficiency of the motor drive, and thus early detection not only reduces 
repair costs but also energy losses. In electrical machines, one of the most critical faults is a break in the inter-turn 
insulation in the stator winding, generating an inter-turn short circuit (Beltran et al., 2009; Ekanayake et al., 2003).
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Abstract:  �This paper proposes a method for the diagnosis of stator inter-turn short-circuit fault for permanent magnet synchronous generators 
(PMSG). Inter-turn short-circuit currents are among the most critical in PMSG. For safety considerations, a fast detection is required 
when a fault occurs. This approach uses the parameter estimation of the per-phase stator resistance in closed-loop control of variable 
speed of wind energy conversion system (WECS). In the presence of an incipient short-circuit fault, the estimation of the resistance 
of the stator in the d-q reference frame does not make it possible to give the exact information. To solve this problem, a novel fault 
diagnosis scheme is proposed using parameter estimation of the per-phase stator resistance. The per-phase stator resistance of 
PMSG is estimated using the MRAS algorithm technique in real time. Based on a faulty PMSG model expressed in Park’s reference 
frame, the number of short-circuited turns is estimated using MRAS. Fault diagnosis is on line detected by analysing the estimated 
stator resistance of each phase according to the fault condition. The proposed fault diagnosis scheme is implemented without any 
extra devices. Moreover, the information on the estimated parameters can be used to improve the control performance. The simulation 
results demonstrate that the proposed method can estimate the faulty phase.

 Open Access. © 2023 Bouslimani et al., published by Sciendo.    This work is licensed under the Creative  
Commons Attribution NonCommercial-NoDerivatives 4.0 License.

https://orcid.org/0000-0003-2600-0562


Fault detection of PMSG in wind energy applications

To avoid motor failure, it is important to have information on the state of health of the stator winding.
The majority of work carried out in the field of system monitoring and diagnostics, the tools used to detect and 

locate faults, are synthesised from an open-loop representation of the system. However, the reality of industrial 
applications means that systems are generally inserted in a regulation or control loop. Closed-loop diagnostics are 
particularly tricky for a number of reasons. On the one hand, the controller can mitigate the effect of faults, which 
makes their detection difficult. On the other hand, the system inputs being correlated with the outputs because of 
the looping creates a difficulty for localisation.

To detect inter-lap failures, there are two categories of detection: offline testing and online monitoring (Ameur 
et al., 2012; Brandao et al., 2008; Meradi et al. 2022). The first requires the engine to be taken out of service, while 
the second does not affect the continuation of the work (Amirat et al., 2009; Bonnett, 1978).

This paper presents robust control strategies of a permanent magnet synchronous generator (PMSG) wind 
energy conversion system (WECS) during inter-turn short-circuit fault and for maximum power extraction during 
wind speed variations.

With such technological improvements, classical controllers for WECSs can be updated by the development of 
more efficient strategies based on modern nonlinear control techniques such as Lyapunov control; such techniques 
have collectively emerged as a particularly suitable option to deal with electronically controlled variable-speed 
operating WECS.

2.	 System Description
The WECS consists of a wind turbine coupled to a PMSG to power a stand-alone system. A three-phase diode 
bridge rectifier is used for the AC/DC conversion. A boost converter (DC/DC) is used to vary the rotor speed (Meradi 
et al. 2013). The proposed control algorithm is independent on turbine characteristics, achieving the fast dynamic 
responses. A battery bank is also used to store surplus power and recompense when wind power is not enough for 
load demand (Figure 1).

3.	 Wind Turbine Model
Several models for power production capability of wind turbines have been developed and can be found throughout 
the bibliography (see, in particular, Beltran et al. [2009] and Ekanayake et al. [2003]).
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Fig. 1. Wind turbine control system. PMSG, permanent magnet synchronous generators; PI, proportional-integral control.
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The mechanical power, captured by a wind turbine, depends on its power coefficient given for a wind velocity v 
and can be represented by:

	
2 30.5 ( , )WT pP C R V= π ρ l b 	 (1)

where r is the air density, R is the radius of wind turbine, V is the wind speed, and Cp is the power coefficient of wind 
turbine, which is a function of tip-speed ratio l and pitch-angle b.

This Cp power coefficient is generally defined as a function of the tip-speed ratio l, as can be inferred from 
Figure 2. In this research, a nonlinear empirical interpolation to represent the Cp is employed as follows (Ekanayake 
et al., 2003):
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4.	 PMSG Modelling
The control objective of the generator-side converter is to extract the maximum power for the PMSG system (Fetene 
and Shibeshi 2020). The nonlinear control based on Lyapunov theory for the Generator magnet synchronous 
machines (GMSM) algorithm is applied to control the speed of the PMSG according to its reference speed, which 
is calculated by the maximum power point tracking (MPPT) control.

The electrical model in the d-q frame of PMSG can be expressed as:

	

qd s d
d q

d d d

q qs d f
q d

q q q q

LdI R vI I
dt L L L
dI vR LI I
dt L L L L


= - + w -




Φ = - - w + w -

� (3)

where Id and Iq are stator currents in a rotating reference frame (the d-q reference frame), Rd and Rq are stator 
resistances, Ld and Lq are d-q reference frame stator inductances, w is the electrical rotor speed, vd and vq are stator 
voltages in the d-q reference frame, and fφ  is a permanent magnet flux of rotor.

The expression for the electromagnetic torque can be described as:

	
3 ( )
2e f q d q d qT p I L L I I = - - ϕ � (4)

C p
 

Fig. 2. Turbine power coefficient various tip-speed-ratio characteristic.
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The dynamic equation of the wind turbine is described by:

	
.

Ω
= - - Ωg

e m g

d
J T T F

dt
� (5)

where J is the moment of inertia, F is the viscous friction coefficient, and Tm is the mechanical torque developed by 
the turbine.

The produced electrical power and reactive powers are given, respectively, by:

	

( )
( )

3
2
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2

= +

= +

d d q q

q d d q

P V I V I

Q V I V I
� (6)

Therefore, the active and reactive power can be controlled by controlling the direct and quadrature currents, 
respectively. However, in the presence of large inductive, or capacitive, loads, an additional source of reactive 
power is required to avoid generation–demand mismatch of reactive power to maintain the system voltage within 
acceptable limits.

5.	 A Nonlinear Control Strategy
The suggested PMSG control scheme is shown in Figure 1. We can also note the placement of the estimator block, 
which evaluates the feedback function in terms of fd and fq given by:
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d d q

d d

fs d
q q q

q q q

LRf I I
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To determine the control feedback, we rewrite Eq. (3) as the following:

	

d
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dI v f
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v f
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l
� (8)

with λd = -1/Ld and λq = -1/Lq

The nonlinear functions fd and fq involved in the state-space model (8) are strongly affected by the conventional 
effects of PMSG.

	

ˆ

ˆ

d
d d d d

q
q q q q

dI v f f
dt

dI
v f f

dt

 = + + D

 = + + D

l

l
� (9)

Let the candidate Lyapunov function related to the currents dynamics be defined by:

	
2 21 1 0

2 2d qV e e= + > � (10)

with: _ refd d de I I= -  and _ refq q qe I I= -
This function is globally positive defined over the whole state space. Its derivative is given by:

	 d d q qV e e e e= +

  � (11)
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Inserting Eq. (9) in Eq. (11) we obtain:

	

( )
( )
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selecting the control law as:
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where K11 and K22 > bi

New entries must be designed to ensure that:

	

_lim( ) 0

lim( ) 0
→+∞

→+∞

- =

 Ω - Ω =

d d ref
t

ref
t

I I

�

Inserting the control law (13) in (12), we obtain:
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where V  is given by:

	
2 2

1 2 0d qV K e K e= - - < 	 (15)

Therefore, the Dfd and Dfq variations can be absorbed if we take:
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These inequalities are satisfied if K1,2 > 0 and

	 11,22| | .f KD < <b

Finally, we can write: 1 0V V< <   and
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5.1.  Robust control in state space
The problem of robust scaling of the state setting is to resort to the principle of imposing a pole domain. In this case 
one does not impose poles well distinct, but a certain admissible domain in the plane S. Therefore, one also obtains 
a certain corresponding domain for the closed-loop coefficients in the space P as well as a domain for the coefficients 
of the state feedback in the space R (Figure 3). In this domain, which depends on the variable parameters K of the 
system, one can then choose the fixed coefficients of the state feedback. Since it is necessary to determine the domain 
of the coefficients for several parameters, one speaks of a problem involving multi-models, where it is necessary to 
treat several models for the system to be regulated having different parameters (Ackermann, 1980, 1985).
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Fig. 3. The transition between stability regions (Γ ® PΓ ® KΓ).

The objective is to determine the coefficients of the state regulator in such a way that the roots of the closed-
loop characteristic equation lie in the left half-plane of the complex plane, regardless of the values of the physical 
parameters. To achieve this goal, we need to examine the stability images and regions associated with the K and 
R regions (in the S plane) in the spaces corresponding to the Kinter section of the stability regions. This analysis 
provides a solution to the problem of robustness with respect to the physical parameter in question. The state 
regulator computed using this approach must exhibit satisfactory performance for all possible values of the robust 
coefficients within the domain of validity (as defined by Ackermann, 1985; Ghosh, 1986).

5.2.  Region of stability in space
The characteristic closed-loop equation is:

	
( )
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( ) ( ) 1
1

n
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i
i

n tP s s s s si ni=

= = - =∏
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∑a a 	 (16)

with:
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t
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=

a a a

�

The ai are the coordinates of the vector at, which represents a point in space P of dimension n.
It follows that [21]:

	 1,iz i nΓ∈R ⇔ ∈Γ ∀ =a � (17)

as Pr is the region of stability in space P. Pr is limited by a real surface and a complex surface.
The limit of the real pole, defined by the contour intersection Γ∂  with the axis of the reals, is given by the equation 

of the following hyperplane (Ackermann, 1980):
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ρ ρ
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On the other hand, the complex limit describes all the polynomials that have at least one pair of complex poles 
conjugated in the outline Γ∂ . For a pair of complex conjugate poles: s1,2 = -r ± jw, the corresponding characteristic 
polynomial is:

	
2 2 2 2

1 2 1 0( ) ( )( ) 2Q s s s s s s s s s= - - = + + + = + +ρ ρ ω b b � (19)
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with:

	
2 2

1 02 and= = +b ρ b ρ ω �

and thus P (s) is written as:
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In a matrix form:
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By eliminating the vector Sn of the two members, we will have:
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In order to eliminate the unknown d, Eq. (23) can be put in the following form:

	

( ) ( )

1

0 1

1

0 1

1 0 0 . . . 0 0
1 0 . . . 0 0

1 . . . . .
. . . . . . . .

1 0 0 1
. . . . . . . .
. . . . . . . .
0 0 . . . 1 0
0 0 . . . 1

t t

 
 
 
 
 
 =  
 
 
 
 
 

b
b b

a d

b
b b

� (23)

therefore:

	 ( ) ( ) 10 0 1 1t t -=d a b � (24)

with:
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Any calculation done gives:
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The di are given by the following recursive form:
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From Eq. (24), we can write:
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with:

	 ( ) ( )1 0 2 0. . . et 0 . . .= =t t
n nc d d c d d �

The complex limit will therefore be: the intersection of two hyperplanes of dimensions (n–1). It is given by:

	 ( )( ) ( )1 21 0 0t c c =a � (28)

5.3.  Region of stability in space K
If certain conditions or values in space P are necessary for stability, then it is important to determine which coefficients 
in space K will lead to those conditions or values.

From Eq. (28), the vector at is calculated by the following expression:

	 t t tk W a= +a � (29)

By injecting this equation into Eqs (19) and (29), it follows that [21]:
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This equation allows us to graphically present the region of stability in space K.
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6.	 Application on the Permanent Magnet Synchronous Machine
Figure 4 presents a block diagram of the speed control, by a robust pole-positioning state regulator, of a PMSM 
supplied by a voltage inverter controlled by the pulse width modulation (PWM) technique (the triangulo strategy – 
sinusoidal).The regulator must be associated with an anti-windup system in order to avoid an overshoot because 
the integrator would continue to sum an error that no longer corresponds to the control voltage. The correction of 
the integral component gives:

	
[ ] [ ] [ ] [ ]lim

1
-

+ = + qs qs
r r

w

v k v k
x k x k

k � (31)

The augmented system with an integrating regulator is given by Eq. (31).
By applying the Leverrier algorithm, the vector coefficients of the closed-loop characteristic equation are given by:
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Fig. 4. Block diagram of the speed control by state feedback of a PMSG. PMSG, permanent magnet synchronous generators.
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The region of stability in the plane S retained is represented by Figure 5:

This region of stability is described by the following hyperbola equation:

	

2 2

2
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a
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where x represents the relative damping coefficient.
In order to have the image of this region in the space K, it is necessary to calculate, on the one hand, the 

complex limit traced by the movement of a pair of complex conjugate poles along the contour, and on the other 
hand, the real limit that presents the image of a fixed pole at -r0 in the space K.

The coefficients bi are given by:
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The complex limit is defined, in the space R, by:
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In order to have a two-dimensional representation in the space K, we will eliminate the contribution of the current 
iqs in the control law (K1 = 0). The expansion of Eq. (35) gives:
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Fig. 5. Region of stability in the S plane.
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As for the actual limit, this limit is defined in the space R by the following equation:
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If we consider that K1 = 0, it happens that:
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6.1.  Robust sizing against j
The calculation methodology is identical to that presented above. Assuming that the variation of the moment of 
inertia can be modelled by the following discrete values (100%, 125%, 150%, 175%, 200%)Jn., the corresponding 
regions of stability would then be bounded by:

–– The complex limit:
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–– The actual limit:
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The intersection of the different regions in the plane K is given by the domain as it is represented in Figure 6.

Fig. 6. Domain of the coefficients of the state adjustment in the plane (Kr, K2).
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6.1.1.  Calculation of Kw

The pole to be compensated is given by:
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1
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With Jmax = 2Jn and Jmin = Jn, we have:
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6.1.2.  Calculation of Kv

For the calculation of the coefficient of the direct intervention of the disturbance quantity based on the 
cancellation of the state of the integrating regulator in steady state, we adopt its nominal value calculated by the  
equation:
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R L
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L p
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ϕ � (44)

To obtain the gains of the digital regulator, the following correction must be made to the coefficients of the 
continuous regulator (Robyns, 1992):
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7.	 Estimation of Rs by Classical MRAS Technique
The system (3) is considered as the model reference and the observer is used as the adjustable one (Hajji et al. 
2020). The stator resistance is included in Eq. (14), which represents a current model relevant to stator resistance. 
So, the stator current model is chosen as the state variable:
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The stator resistance is built around the following adaptive mechanism as (Utkin et al., 2009): 

	
( )1ˆ ˆ ˆ= - +∫s d ds q qs

d

R e i e i dt
L � (47)

with:
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Fig. 7.  (a) Stator resistance estimation under inter-turn short-circuit fault, (b) inter‐turn short‐circuit indicator, (c) stator resistance estimation under 
inter-turn short-circuit fault, and (d) inter‐turn short‐circuit indicator.

This technique estimates a single value of the resistance (Rs) (Figure 7), and thus it is not valid for asymmetric 
variations such as stator faults.

(b) shows inter-turn short-circuit indicator of Rs by classical technique (symmetric fault); (c) stator resistance 
estimation under inter-turn short-circuit fault (asymmetric fault); and (d) inter-turn short-circuit indicator of Rs by 
classical model reference adaptive system (MRAS) (asymmetric fault).

These results confirm the inability of the classical technique (classic MRAS) to provide information on the state 
of the machine.
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8.	 The Proposed Estimation MRAS for the Per-phase Values Stator Resistance
Figure 8 shows the proposed technique based on a symmetrical PMSM in the (a, b, c) coordinate system; 
accordingly, the flux components generated by the permanent magnet are given as (Bouslimani et al. 2022,  
2019, 2016) :
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where fϕ  is the flux linkage of the permanent magnet and θ  is the electrical angular position.

The electrical motion equation of a PMSM, neglecting the reluctance effects, can be written as (Utkin et al., 
2009):
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where Ra, b, c are the winding resistances, La, b, c are the winding inductances, ia, b, c are the phases currents, and ua, b, c  
are the phase voltages.

Fig. 8. MRAS stator resistances estimation.
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Furthermore Ea, Eb, Ec are the induced electromotive force (EMF) components of the following form:
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in which d
dt

=
θ

ω  is the electrical angular speed.

Then, Eq. (2) can be expressed as:
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where,
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An adjustable model can be obtained by substituting estimated value for real value in Eq. (5), and is given by:
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Subtracting Eq. (6) from Eq. (5), we obtain a form of Eq. (7), which is given by:
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where
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We consider the following Lyapunov candidate function:
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with:
a b c, ,  0>l l l  constants, which are involved in the Lyapunov function. Therefore, the derivative of the Lyapunov 

function is given as:
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To ensure the negativity of the Lyapunov function, therefore ensuring convergence and stability of the process, 
we derive the following:
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Finally, we have:
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9.	 Simulation Results
In order to verify the proposed fault diagnosis technique, simulations were performed for variable speed. The 
Figures 9 (a) and (b) show the simulation results of the proposed MRAS technique with inter turn short circuits.
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Fig. 9.  (a) Estimated stator resistances under inter-turn short-circuit fault, (b) inter‐turn short‐circuit indicator, (c) mechanical speed, (d) wind speed 
profile, (e) direct and quadrature currents, and (f) power coefficient.
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Figure 9 (c) shows the performance of MRAS rotor speed estimator with taking consideration of stator inter-turn 
short-circuits. Figure 9 (d) shows the evolution of the main characteristics namely: direct and quadrature currents 
with taking consideration of stator inter-turn short-circuits.

10.	  Conclusion
In this paper, principally with the objective of estimating the resistance value of each phase of PMSG in WECS, we 
propose a fast and robust fault diagnosis strategy in closed-loop using the direct Lyapunov control in conjunction 
with the MRAS technique. The proposed scheme has been achieved by using the variation of the stator resistances, 
which are estimated in real time to detect the faulty phase with fastest time and can easily be embedded. The 
robustness and stability are guaranteed theoretically and illustrated. The feasibility of the proposed fault diagnosis 
scheme has been verified using simulation results under various fault conditions. However, there are several areas 
of future research that can be explored to further enhance the efficiency and robustness of the strategy.

1.	 Investigation of fault scenarios: The fault diagnosis strategy should be able to detect different types of faults that 
may occur in the WECS, including rotor faults, stator faults, and power electronic faults.

2.	 Improved MRAS technique: The effectiveness of the MRAS technique in estimating the resistance value of each 
phase of PMSG is crucial for the accuracy of the fault diagnosis strategy. Therefore, future research can focus 
on developing improved MRAS techniques that can provide more accurate estimation of the resistance value 
under different operating conditions.

3.	 Robustness analysis: The robustness of the fault diagnosis strategy in the presence of measurement noise, 
parameter uncertainties, and modelling errors is an important consideration.

4.	 Validation using experimental data: This methodology involves developing experimental setups that can 
accurately represent the dynamics of a WECS and conducting experiments to validate the proposed strategy.

5.	 Integration with other control strategies: The fault diagnosis strategy can be integrated with other control 
strategies, such as fault-tolerant control and reconfiguration control, to enhance the overall performance of the 
WECS.
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